Doing Research with the Digital Archaeological Archive of Comparative Slavery: A Workshop

Handouts available at:
http://www.daacs.org/research/workshops/

Jillian E. Galle, Lynsey Bates, Elizabeth Bollwerk, Leslie Cooper

Society for Historical Archaeology Annual Meeting
January 3, 2018
The Four Key Website Sections for Research
http://www.daacs.org/

1. Archaeological Sites
2. Query the Database
3. About the Database
4. Research
How to Find Archaeological Sites and Plantations

1. Use Atlantic Sites Map to locate sites
 http://www.daacs.org/archaeological-sites-map/

2. Use fly-out menu and region maps to select specific sites

Navigable Maps Locate Plantations and Sites

http://www.daacs.org/archaeological-sites-map/
Navigate to Plantations
Montpelier Estate Plantation Page

http://www.daacs.org/plantations/montpelier/
Navigate to Individual Sites

http://www.daacs.org/regions/caribbean/
You can also navigate to specific Plantations and Sites using...

The fly-out menu

The left-hand navigation bar
Archaeological Sites Pages
The first place to start researching an archaeological site.

Every archaeological site in DAACS has a suite of seven related content pages that provide a researcher with a site report, chronology, Harris matrix, downloadable maps and images, as well as critical information that with aid in the analysis of data from each site.

Researchers need to spend time with these pages prior to accessing the site’s context and artifact data.

The seven content pages are:
1. Site Home
2. Background
3. Before You Begin
4. Features
5. Chronology
6. Harris Matrix
7. Images

Links are here
Site Home Page

1. Provides a map detailing the full extent of the site’s excavation. Downloadable maps available through the Site Images page.

2. Provides an at-a-glance summary of the site’s location, when it was excavated, and by whom.
Site Background Page: A must read!

1. Site background pages are most often written by the project’s principal investigator.

2. Every site background page has the same four subheadings: Overview, Documentary evidence, Excavation history, procedure and methods, and Summary of research and analysis.

3. Site Images are expandable and downloadable.
Before You Begin Page: A must read!

1. Provides a list of things a researcher needs to know before using the data from the site.

2. Provides a quick view of excavation methods, as well as any parts of the collection that may be digitally translated, cataloged with different protocols, or that are missing.
Site Features

1. Summarizes how features were identified and excavated at the site. The page provides readers with an overview of the features.

2. If features were excavated at the site, provides summary tables that group features Feature Groups and provides quick identifying information. The Context Queries in the Query the Database section provide many more details on individual features.
Site Chronology

1. DAACS has developed an uniform set of methods to infer intra-site chronologies for all of the sites included in the archive. Each *Chronology* page describes the frequency seriation and correspondence analysis methods used to develop the site chronology.

2. Occupation phases are assigned for each site, and a table provides the accompanying MCD, BLUEMCD, TPQ, TPQ90 and TPQ95. The DAACS Glossary defines these terms.

3. The Query the Database section of the archive provides vanilla Mean Ceramic Dates by Context, Feature Numbers, Feature Types, Feature Groups, Stratigraphic Groups, Phased, and Sites.
Harris Matrix

1. The Harris Matrix summarizes stratigraphic relationships among excavated contexts and groups of contexts that DAACS staff has identified as part of the same stratigraphic group.

2. DAACS staff create the Harris Matrix based on data on stratigraphic relationships recorded among contexts in the DAACS database. It also includes color codes contexts, features, and stratigraphic groups by phase.

3. The Harris Matrix is drawn with the ArchEd application (http://www.ads.tuwien.ac.at/arched/index.html) and are downloadable.
Images

1. The Image Page provides expandable and downloadable photographs of the site and some of the recovered artifacts. All images related to the site can be found using an Image Query in the Query the Database section of the website.

2. Site maps, in .pdf, .dgn, and .dxr formats, are also available for download and use through the Images page.
Bibliography

1. Provides a detailed bibliography of published and presented papers relating to the site.
Plantation Home Page

1. Provides schematic map of plantation, with archaeological sites that are in DAACS located by orange “bulls-eyes”.

2. Provides links to the archaeological sites from the plantation currently in DAACS
Plantation Background

1. Provides detailed background information, including summaries about what is known about the plantation from documentary and archaeological sources.

2. Provides links to expandable and downloadable images.
Plantation Images

1. Provides downloadable images and maps of the plantation.
Query the Database

http://www.daacs.org/query-the-database/
Artifact Queries

Artifact Queries provide users with access to all of the artifact data in the DAACS. The queries return data on assemblage content for one or more sites at varying levels of details and aggregation.

http://www.daacs.org/query-the-database/artifact-queries/
Context Queries return detailed data on excavated contexts for the chosen site or sites.

http://www.daacs.org/query-the-database/context-queries/
Object Queries

Object Queries provide users with access to data on all of the Objects cataloged in the DAACS.
The Site Query gives users access to all of the meta-data collected on an archaeological site or sites.

http://www.daacs.org/query-the-database/site-information-queries/
Image Queries

Image Queries return image data for chosen sites.

http://www.daacs.org/query-the-database/image-queries/
Mean Ceramic Date Queries

A mean ceramic date offers a quick and rough indication of the chronological position of a ceramic assemblage. DAACS offers two different mean ceramic date queries. The first provides mean ceramic dates for the chosen level of aggregation. The second provides ware-type frequencies.

http://www.daacs.org/query-the-database/meanceramicdate-queries/
Document Queries
(only for Nevis and St. Kitts sites)

Document Queries provide users with access to primary documentary material from the Jessups, New River, and Spring Village sites on the islands of Nevis and St. Kitts. Currently, primary source material is not available for other sites in the Archive.

How Queries Work: an example

Before You Begin

Each query is different, offering a range of options for summarizing and aggregating the data.

The first query of any given query type provides the most basic data (the fewest fields) and few aggregation options.

Subsequent queries within a query type offer more options for getting the data you want.

All query results can be downloaded for use in the stats package of your choice (or excel).
How Queries Work: an example

Step 1: Aggregate/Subset Data

Here we chose Phase

Specify Phase or leave blank and get data for all Phases
Step 2: Choose Site or Sites

Selected Building 0
Query Results

Project Query - Back inventory by Category

<table>
<thead>
<tr>
<th>PROJECT NAME</th>
<th>PROJECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building a</td>
<td>1000</td>
</tr>
<tr>
<td>Building b</td>
<td>1000</td>
</tr>
<tr>
<td>Building c</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BACKDROPPED</th>
<th>TOTAL COUNT</th>
<th>ARTIFACT TYPE</th>
<th>ARTIFACT CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building a</td>
<td>1</td>
<td>Blade, Shave</td>
<td>Blade</td>
</tr>
<tr>
<td>Building b</td>
<td>1</td>
<td>Blade, 2 Piece</td>
<td>Blade</td>
</tr>
<tr>
<td>Building c</td>
<td>1</td>
<td>Blade, Filed</td>
<td>Blade</td>
</tr>
</tbody>
</table>

- **Phase:** PO1
- **Artifact Count:** 852
- **Sites:** Building a
About the Database

http://www.daacs.org/about-the-database/
The DAACS Cataloging Manuals provide researchers using DAACS data with a comprehensive manual describing how those data were created and insure data consistency between catalogers through the duration of the project by explicating cataloging protocols.
About the Database: Stylistic Elements

DAACS Stylistic Elements

DAACS offers two approaches to recording and analyzing decoration on ceramics, the DAACS Stylistic Element Initiative and DAACS Ceramic Genres. The DAACS Stylistic Element Initiative records individual decorative elements on the sherd level, providing researchers with detailed data on decorative elements and motifs. DAACS Ceramic Genres provide a way of understanding decoration on ceramics by using traditional types, based on decorative technique and patterns. Both are described below.

DAACS Stylistic Element Initiative

The DAACS Stylistic Element Initiative explores an approach to measuring variation in applied decoration on ceramics that is novel in historical archaeology. Traditionally, historical archaeologists have measured decorative variation at the level of the sherd or vessel. This means that a single sherd or vessel has to be assigned to a single decorative category or genre. This approach produces useful results (and we have followed it in the DAACS ceramic genre field), but it may obscure decorative variation when there are multiple decorative elements on a single

Glossary Links

DAACS Stylistic Element Glossaries
- Stylistic Element Glossary A-C (4 MB)
- Stylistic Element Glossary D-G (1.386 MB)
- Stylistic Element Glossary H-O (895 KB)
- Stylistic Element Glossary P-S (1.089 MB)
- Stylistic Element Glossary T-Z (552 KB)
About the Database:
Guidelines for Use Copyright and Citation Information

http://www.daacs.org/about-the-database/guidelines/
Research

http://www.daacs.org/research/
Research: Papers and Manuscripts

http://www.daacs.org/research/papers-manuscripts/
Research: Galleries

http://www.daacs.org/research/galleries/
Use of DAACS by Historians
(that we know about)

Morgan, P. D., and A. J. O’Shaughnessy

Bly, Antonio
2008 “Pretends he can read”: Runaways and Literacy in Colonial America, 1730-1776” Early American Studies 6.2 (Fall 2008): 261-294.
http://history.appstate.edu/sites/history.appstate.edu/files/Bly,%20Pretends%20he%20can%20read.pdf

DAACS figures in historians’ reflections on the ways in which archaeological data might advance their understanding of changing slave life ways

Morgan, Phillip D.

Other Digital Resources for Teaching Slavery and Archaeology

Data Rich

- The Digital Archaeological Record (tDar): http://core.tdar.org/
- The Comparative Archaeological Study of Colonial Chesapeake Culture: http://www.chesapeakearchaeology.org/index.cfm

Qualitative historical data but quantitative data could be gleaned

Working with DAACS Data
Working with data is an iterative process!
An example from MCD Queries

Monticello’s Building t and the “Negro Quarter”
---Occupied 1770s-1790s.
---Log house with four rooms, each with their own subfloor Pit (F01-F04).
---Possibly home to Issac Jefferson and his parents, Ursala and Great George.
--Constructed between 1793 and 1795.
--One subfloor pit (F05)
--Described by Jefferson on his 1796 Mutual assurance plat
 r. which as well as s. and t. are servants houses of wood with wooden chimneys, & earth floors, 12. by 14. feet, each and 27. feet apart from one another. from t. it is 85 feet to F. the stable.
Mean Ceramic Date Query 1
The DAACS Mean Ceramic Date Query 1 calculates two types of Mean Ceramic Dates

Regular MCDs: Are calculated using established beginning and ending manufacturing dates for ceramic ware types.

BLUE MCDs (BLUE stands for Best Linear Unbiased Estimator): Uses the same beginning and ending manufacturing dates but gives less emphasis to ceramic ware with long manufacturing spans.

\[
MCD_{blue} = \frac{\sum_{i=1}^{t} m_i p_i \left(\frac{1}{s_i/6} \right)^2}{\sum_{i=1}^{t} p_i \left(\frac{1}{s_i/6} \right)^2}
\]

Where \(m_i \) is the manufacturing midpoint for the \(i'th \) ceramic type, \(p_i \) is its relative frequency, and \(s_i \) is its manufacturing span.

Mean Ceramic Date Query 1: Aggregate by site.

<table>
<thead>
<tr>
<th>PROJECT NAME</th>
<th>MCD</th>
<th>BLUE MCD</th>
<th>TOTAL COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building t</td>
<td>1800.0</td>
<td>1796.0</td>
<td>3320</td>
</tr>
</tbody>
</table>
Mean Ceramic Date Query 1: Aggregate by Feature Group.

<table>
<thead>
<tr>
<th>PROJECT NAME</th>
<th>FEATURE GROUP</th>
<th>FEATURE GROUP INTERPRETATION</th>
<th>MCD</th>
<th>BLUE MCD</th>
<th>TOTAL COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building t</td>
<td>FG01</td>
<td>Negro Quarter subfloor pits.</td>
<td>1800.0</td>
<td>1785.0</td>
<td>102</td>
</tr>
<tr>
<td>Building t</td>
<td>FG02</td>
<td>East-West fence running through both the Negro Quarter and Building t.</td>
<td>1796.0</td>
<td>1791.0</td>
<td>26</td>
</tr>
<tr>
<td>Building t</td>
<td>FG03</td>
<td>East-West fence located along the south wall of Building t.</td>
<td>1788.0</td>
<td>1791.0</td>
<td>12</td>
</tr>
<tr>
<td>Building t</td>
<td>FG04</td>
<td>East-West fence running along the north edge of the site and passing through the Negro Quarter and Building t.</td>
<td>1760.0</td>
<td>1760.0</td>
<td>1</td>
</tr>
</tbody>
</table>
Mean Ceramic Date Query 1: Aggregate by Feature Number

<table>
<thead>
<tr>
<th>PROJECT NAME</th>
<th>FEATURE NUMBER</th>
<th>FEATURE GROUP</th>
<th>FEATURE GROUP INTERPRETATION</th>
<th>MCD</th>
<th>BLUE MCD</th>
<th>TOTAL COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 1</td>
<td>F01</td>
<td>F601</td>
<td>Negro Quarter subfloor pits.</td>
<td>1823.0</td>
<td>1815.0</td>
<td>60</td>
</tr>
<tr>
<td>Building 1</td>
<td>F02</td>
<td>F601</td>
<td>Negro Quarter subfloor pits.</td>
<td>1789.0</td>
<td>1774.0</td>
<td>16</td>
</tr>
<tr>
<td>Building 1</td>
<td>F03</td>
<td>F601</td>
<td>Negro Quarter subfloor pits.</td>
<td>1737.0</td>
<td>1759.0</td>
<td>15</td>
</tr>
<tr>
<td>Building 1</td>
<td>F04</td>
<td>F601</td>
<td>Negro Quarter subfloor pits.</td>
<td>1778.0</td>
<td>1783.0</td>
<td>11</td>
</tr>
<tr>
<td>Building 1</td>
<td>F05</td>
<td></td>
<td></td>
<td>1781.0</td>
<td>1794.0</td>
<td>13</td>
</tr>
</tbody>
</table>
MCDQ2: Ware Type Frequencies

--Step 1: Select Feature 01
--Step 2: Select Building t.

<table>
<thead>
<tr>
<th>PROJECT NAME</th>
<th>FEATURE NUMBER</th>
<th>FEATURE TYPE</th>
<th>FEATURE GROUP</th>
<th>FEATURE GROUP INTERPRETATION</th>
<th>WARE TYPES</th>
<th>COUNT</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building t:</td>
<td>F01</td>
<td>F01</td>
<td>F01</td>
<td>Negro Quarter subfloor pits.</td>
<td>American Stoneware</td>
<td>49</td>
<td>436.6993</td>
</tr>
<tr>
<td>Building t:</td>
<td>F01</td>
<td>F01</td>
<td>F01</td>
<td>Negro Quarter subfloor pits.</td>
<td>Creamware</td>
<td>2</td>
<td>25.0</td>
</tr>
<tr>
<td>Building t:</td>
<td>F01</td>
<td>F01</td>
<td>F01</td>
<td>Negro Quarter subfloor pits.</td>
<td>Delftware, Dutch/British</td>
<td>2</td>
<td>2.3</td>
</tr>
<tr>
<td>Building t:</td>
<td>F01</td>
<td>F01</td>
<td>F01</td>
<td>Negro Quarter subfloor pits.</td>
<td>Porcelain, Chinese</td>
<td>2</td>
<td>4.1</td>
</tr>
<tr>
<td>Building t:</td>
<td>F01</td>
<td>F01</td>
<td>F01</td>
<td>Negro Quarter subfloor pits.</td>
<td>Redware</td>
<td>4</td>
<td>5.9</td>
</tr>
<tr>
<td>Building t:</td>
<td>F01</td>
<td>F01</td>
<td>F01</td>
<td>Negro Quarter subfloor pits.</td>
<td>White Salt Glaze</td>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

What do we know about American Stoneware?
--Long manufacturing span!
--Begin 1750, end 1820 (DAACS dates).

Next step, recalculate MCD without Stoneware
Backend view of tblCeramicWare in the DAACS database

<table>
<thead>
<tr>
<th>WareID</th>
<th>Ware</th>
<th>ObjectTypeID</th>
<th>BeginDate</th>
<th>EndDate</th>
<th>CeramicMaterialID</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>Agate, refined (Whieldon-type)</td>
<td>4</td>
<td>1740</td>
<td>1775</td>
<td>1</td>
</tr>
<tr>
<td>118</td>
<td>Albisola</td>
<td>4</td>
<td>1750</td>
<td>1920</td>
<td>3</td>
</tr>
<tr>
<td>52</td>
<td>American Stoneware</td>
<td>4</td>
<td>1725</td>
<td>1775</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Actbury Type</td>
<td>4</td>
<td>1830</td>
<td>1900</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>Bennington/Rockingham</td>
<td>4</td>
<td>(Null)</td>
<td>(Null)</td>
<td>8</td>
</tr>
<tr>
<td>122</td>
<td>Biot</td>
<td>4</td>
<td>1780</td>
<td>1835</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>Black Basalt</td>
<td>4</td>
<td>1750</td>
<td>1820</td>
<td>3</td>
</tr>
<tr>
<td>115</td>
<td>Bristol Glaze Stoneware</td>
<td>4</td>
<td>(Null)</td>
<td>(Null)</td>
<td>3</td>
</tr>
<tr>
<td>53</td>
<td>British Stoneware</td>
<td>4</td>
<td>1671</td>
<td>1800</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Buckley</td>
<td>4</td>
<td>1720</td>
<td>1775</td>
<td>8</td>
</tr>
<tr>
<td>56</td>
<td>Burslem</td>
<td>4</td>
<td>1700</td>
<td>1725</td>
<td>2</td>
</tr>
<tr>
<td>88</td>
<td>Canary Ware</td>
<td>4</td>
<td>1780</td>
<td>1835</td>
<td>1</td>
</tr>
<tr>
<td>103</td>
<td>Caribbean Coarse Earthenware, hand built</td>
<td>4</td>
<td>(Null)</td>
<td>(Null)</td>
<td>8</td>
</tr>
<tr>
<td>117</td>
<td>Caribbean Coarse Earthenware, unid.</td>
<td>4</td>
<td>(Null)</td>
<td>(Null)</td>
<td>8</td>
</tr>
<tr>
<td>116</td>
<td>Caribbean Coarse Earthenware, wheel thrown</td>
<td>4</td>
<td>(Null)</td>
<td>(Null)</td>
<td>8</td>
</tr>
<tr>
<td>99</td>
<td>Cauliflower ware</td>
<td>4</td>
<td>1760</td>
<td>1780</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Coarse Earthenware, unidentified</td>
<td>4</td>
<td>(Null)</td>
<td>(Null)</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>Colonware</td>
<td>4</td>
<td>(Null)</td>
<td>(Null)</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>Creamware</td>
<td>4</td>
<td>1762</td>
<td>1820</td>
<td>1</td>
</tr>
<tr>
<td>106</td>
<td>Creamware, Carolina</td>
<td>4</td>
<td>1765</td>
<td>1775</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>Delftware, Dutch/British</td>
<td>4</td>
<td>1600</td>
<td>1802</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>Derbyshire</td>
<td>4</td>
<td>1750</td>
<td>1800</td>
<td>8</td>
</tr>
<tr>
<td>35</td>
<td>Faience</td>
<td>4</td>
<td>1700</td>
<td>1800</td>
<td>1</td>
</tr>
</tbody>
</table>
DAACS Artifact Query Example 1:

Research Question:
Do bead colors vary at sites and between regions in DAACS?

If so, these differences could be related to variation in market access or consumer preference, or both (additional factors to analyze may include time.)

The first step in this analysis is executing a DAACS Artifact Query!
Execute a DAACS Artifact Query

Using Artifact Query 3:
Select Beads as the Artifact Type in Step 1.
Subset Data by Phase in Step 2: Subsetting our data by chronological phase at each site allows us to analyze bead color variation over time.
Select the following sites for Step 3:
Caribbean Region

<table>
<thead>
<tr>
<th>CARIBBEAN</th>
<th>NORTH AMERICA</th>
<th>UNITED KINGDOM</th>
</tr>
</thead>
</table>

BARBADOS
- St. Nicholas Abbey Estate
 - St. Nicholas Abbey
 - Mona Estate
 - Mona Great House
 - Mona Works/Book Keeper's House
 - **Mona Village**
 - Trents Plantation
 - Trents Enslaved Laborer Settlement (Locus 2)
 - Trents Early Settlement (Locus 1)
 - Trents Cave (Locus 3)

DOMINICA
- Sugarloaf
 - Sugarloaf
 - Bois Colette Estate
 - Bois Colette Estate
 - Not Associated with a Plantation
 - Cabrits Garrison Village
 - Outer Cabrits Soldiers' Barracks
 - Morne Patate Estate
 - Morne Patate

JAMAICA
- Drax Hall Estate
 - Drax Hall Feature 01
 - Drax Hall Feature 15
 - Drax Hall Feature 52
 - Drax Hall Village
 - Mona Estate
 - Mona Great House
 - Mona Works/Book Keeper's House
 - **Mona Village**
 - Morne Patate
 - Morne Patate

MONTserrat
- Little Bay Plantation
 - Little Bay Cattle Mill
 - Little Bay Structure 1
 - Little Bay Structure 5 House
 - Little Bay Worker's Vill

NEVIS
- Jessups Estate
 - Jessups Village I
 - Jessups Village II
 - New River Estate
 - New River Village I
 - New River Village II
 - Not Associated with a Plantation
 - Upper Rawlins Estate

ST. JOHN, USVI
- Estate Beliveau
 - Estate Beliveau

ST. KITTS
- The Spring Estate
Select the following sites for Step 3:
North America Region

- Middleburg Village
- 388K76
- 388K78

TENNESSEE
- The Hermitage Plantation
 - East Cabin
 - Field Quarter Cabin 1
 - Field Quarter Cabin 2
 - Field Quarter Cabin 3
 - Field Quarter Cabin 4
 - Field Quarter KES
 - Field Quarter STP Survey
 - First Hermitage South Cabin
Submit Query and Download in Related Data format.
In Excel, create a new column and name it “Region.” Assign the region for first 16 rows “SC.” Assign “JA” for the remainder of the rows.
Select entire data frame, then Insert Pivot Table. Create table using the following fields:

- Project Name
- Count
- Bead Color
What does the resulting Pivot Table look like?

<table>
<thead>
<tr>
<th>Region</th>
<th>Count</th>
<th>Bead Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>388K9245</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>388K975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>388K976</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>House 15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>House 16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mona Village</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Papine Village</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>2</td>
<td>4 3 4 9 8 1 8 1 4 1 18 5 2</td>
</tr>
</tbody>
</table>

Create a new table that sums the counts by Region instead of Project Name.

<table>
<thead>
<tr>
<th>Region</th>
<th>Count</th>
<th>Bead Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA</td>
<td>2</td>
<td>4 1 2 5 8 1 7 1 4 1 15 3 1</td>
</tr>
<tr>
<td>SC</td>
<td>2</td>
<td>2 4 1 1 3 2 1</td>
</tr>
<tr>
<td>Grand Total</td>
<td>2</td>
<td>4 3 4 9 8 1 8 1 4 1 18 5 2</td>
</tr>
</tbody>
</table>
DAACS Artifact Query Example 2:

Use Artifact Query 3 to examine how Button discard varies at sites and between regions.

Using Artifact Query 3:
Select Buttons as Artifact Type in Step 1.
Select the following Button fields to return:
• Material, Button Type, Button Shape, Diameter

Subset Data by Phase in Step 2: Subsetting our data by chronological phase at each site allows us to analyze differences in button attributes over time.
Select the following sites for Step 3:
Caribbean Region

<table>
<thead>
<tr>
<th>Site Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mona Estate</td>
</tr>
<tr>
<td>Mona Village</td>
</tr>
<tr>
<td>Stewart Castle Estate</td>
</tr>
<tr>
<td>Montpellier Estate (JA)</td>
</tr>
<tr>
<td>Montpellier House 14</td>
</tr>
<tr>
<td>Montpellier House 24</td>
</tr>
<tr>
<td>Montpellier House 26</td>
</tr>
<tr>
<td>Montpellier House 37</td>
</tr>
<tr>
<td>Montpellier Yard Contexts</td>
</tr>
<tr>
<td>Orange Valley Estate</td>
</tr>
<tr>
<td>Orange Valley Village</td>
</tr>
<tr>
<td>Papine Estate</td>
</tr>
<tr>
<td>Papine Cemetery</td>
</tr>
<tr>
<td>Papine Village</td>
</tr>
<tr>
<td>Sevville Estate</td>
</tr>
<tr>
<td>House 15</td>
</tr>
<tr>
<td>House 16</td>
</tr>
<tr>
<td>Sevville House 32</td>
</tr>
<tr>
<td>Sevville House 35</td>
</tr>
<tr>
<td>Sevville: Old and New Village Survey</td>
</tr>
<tr>
<td>Jessups Estate</td>
</tr>
<tr>
<td>Jessups Village I</td>
</tr>
<tr>
<td>Jessups Village II</td>
</tr>
<tr>
<td>New River Estate</td>
</tr>
<tr>
<td>New River Village I</td>
</tr>
<tr>
<td>New River Village II</td>
</tr>
<tr>
<td>St. John, USVI</td>
</tr>
<tr>
<td>Estate Belivue</td>
</tr>
<tr>
<td>ST. Kitts</td>
</tr>
<tr>
<td>The Spring Estate</td>
</tr>
</tbody>
</table>
Select the following sites for Step 3:
North America Region

- **Middleburg Plantation**
 - Middleburg Village

- **South Carolina**
 - 380K75
 - 380K78

N/A

Silver Bluff Plantation

Tennessee
- The Hermitage Plantation
 - East Cabin
 - Field Quarter Cabin 1
 - Field Quarter Cabin 2
 - Field Quarter Cabin 3
 - Field Quarter Cabin 4
 - Field Quarter KES
 - Field Quarter STP Survey
 - First Hermitage South Cabin
Submit Query and Download in Related Data format.
In Excel, create a new column and name it “Region.” Assign the region for first 70 rows “SC.” Assign “JA” for the remainder of the rows.

<table>
<thead>
<tr>
<th></th>
<th>Project Name</th>
<th>Project ID</th>
<th>Region</th>
<th>Context</th>
<th>Quadrat ID</th>
<th>Deposit Type</th>
<th>Feature Type</th>
<th>Feature Number</th>
<th>Feature Group Interpretation</th>
<th>Feature Group</th>
<th>DAACS SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>SC</td>
<td>245-F05</td>
<td>Fill</td>
<td></td>
<td>Pit, unidentified</td>
<td>F05</td>
<td></td>
<td></td>
<td>$610</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>SC</td>
<td>245-F12-07</td>
<td>Fill</td>
<td></td>
<td>Pit, unidentified</td>
<td>F12</td>
<td></td>
<td></td>
<td>$612</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>SC</td>
<td>245-F12-09</td>
<td>Fill</td>
<td></td>
<td>Pit, unidentified</td>
<td>F12</td>
<td></td>
<td></td>
<td>$610</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>SC</td>
<td>265A-4-1</td>
<td>Fill</td>
<td>Cellar</td>
<td>265A</td>
<td>Structure 265A</td>
<td></td>
<td></td>
<td>$601</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>SC</td>
<td>265A-4-1</td>
<td>Fill</td>
<td>Cellar</td>
<td>265A</td>
<td>Structure 265A</td>
<td></td>
<td></td>
<td>$601</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>SC</td>
<td>245-F12-01</td>
<td>Fill</td>
<td></td>
<td>Pit, unidentified</td>
<td>F12</td>
<td></td>
<td></td>
<td>$610</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>SC</td>
<td>245-F12-10</td>
<td>Fill</td>
<td></td>
<td>Pit, unidentified</td>
<td>F12</td>
<td></td>
<td></td>
<td>$610</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>SC</td>
<td>245-F12-10</td>
<td>Fill</td>
<td></td>
<td>Pit, unidentified</td>
<td>F12</td>
<td></td>
<td></td>
<td>$610</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U47-2</td>
<td>U47</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$606</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F27-4</td>
<td>Fill</td>
<td></td>
<td>Pit, trash</td>
<td>F27</td>
<td></td>
<td></td>
<td>$600</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U86-2</td>
<td>U16</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$600</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-3-0</td>
<td>Surface Collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$604</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F29-5</td>
<td>Fill</td>
<td></td>
<td>Pit, trash</td>
<td>F29</td>
<td></td>
<td></td>
<td>$604</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U34-2</td>
<td>U34</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$606</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F27-4</td>
<td>Fill</td>
<td></td>
<td>Pit, trash</td>
<td>F27</td>
<td></td>
<td></td>
<td>$606</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F05-20</td>
<td>Fill</td>
<td>Floor, clay</td>
<td>F05</td>
<td>Structure 7582</td>
<td>FG01</td>
<td></td>
<td>$601</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U38-2</td>
<td>U38</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$600</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F02-3</td>
<td>Fill</td>
<td></td>
<td>Pit, trash</td>
<td>F02</td>
<td></td>
<td></td>
<td>$603</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U28-2</td>
<td>U28</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$606</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F05-02</td>
<td>Fill</td>
<td>Floor, clay</td>
<td>F05</td>
<td>Structure 7582</td>
<td>FG01</td>
<td></td>
<td>$601</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U41-2</td>
<td>U41</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$606</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U38-2</td>
<td>U38</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$600</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-B10-2</td>
<td>Clean-Up/Out-of-Stratigraphic Context</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$600</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U25-2</td>
<td>U25</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$606</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U39-2</td>
<td>U39</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$606</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F05-11</td>
<td>Fill</td>
<td>Floor, clay</td>
<td>F05</td>
<td>Structure 7582</td>
<td>FG01</td>
<td></td>
<td>$601</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-B29-5</td>
<td>Fill</td>
<td></td>
<td>Pit, trash</td>
<td>F29</td>
<td></td>
<td></td>
<td>$604</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U44-2</td>
<td>U44</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$600</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F01-1</td>
<td>Fill</td>
<td></td>
<td>Pit, other</td>
<td>F31</td>
<td></td>
<td></td>
<td>$500</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F02-3</td>
<td>Fill</td>
<td></td>
<td>Pit, trash</td>
<td>F02</td>
<td></td>
<td></td>
<td>$603</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U34-2</td>
<td>U34</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$606</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U43-2</td>
<td>U43</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$606</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F02-13</td>
<td>Fill</td>
<td>Floor, clay</td>
<td>F05</td>
<td>Structure 7582</td>
<td>FG01</td>
<td></td>
<td>$601</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-F29-5</td>
<td>Fill</td>
<td></td>
<td>Pit, trash</td>
<td>F29</td>
<td></td>
<td></td>
<td>$604</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-L34</td>
<td>U34</td>
<td>Surface Collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U39-2</td>
<td>U39</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$506</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U30-2</td>
<td>U30</td>
<td>Plowzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$506</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td>SC</td>
<td>J58-U29-1</td>
<td>U29</td>
<td>Topsoil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$601</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>SC</td>
<td>J6-L010</td>
<td>U010</td>
<td>Surface Collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td>SC</td>
<td>J6-U35-1</td>
<td>U38</td>
<td>Topsoil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$601</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td>SC</td>
<td>J6-U28-1</td>
<td>U28</td>
<td>Topsoil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$509</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td>SC</td>
<td>J6-U29-1</td>
<td>U29</td>
<td>Topsoil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$601</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td>SC</td>
<td>J6-F00-3</td>
<td>Fill</td>
<td></td>
<td>Pit, unidentified</td>
<td>F008</td>
<td></td>
<td></td>
<td>$505</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td>SC</td>
<td>J6-U28-1</td>
<td>U28</td>
<td>Topsoil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$509</td>
</tr>
</tbody>
</table>
Select entire data frame, then Insert Pivot Table.
Create table using the following fields:

- Project Name
- Count
- Material
Resulting Pivot Table:

<table>
<thead>
<tr>
<th>Row Labels</th>
<th>Copper Alloy</th>
<th>Glass</th>
<th>Gold</th>
<th>Iron</th>
<th>Lead Alloy</th>
<th>Not Applicable</th>
<th>Not Recorded</th>
<th>Pewter</th>
<th>Shell</th>
<th>Silver</th>
<th>Synthetic, und.</th>
<th>(blank)</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>38BK245</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>38BK75</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>38BK76</td>
<td>21</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>House 15</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>9</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>House 16</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Mona Village</td>
<td>2</td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Papine Village</td>
<td>7</td>
<td>6</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>(blank)</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>12</td>
<td>80</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>9</td>
<td>13</td>
<td>7</td>
<td>2</td>
<td>131</td>
</tr>
</tbody>
</table>
Add Button Shape as a Row Label
- Project Name
- Count
- Material
- Button Shape

Now, look at these attributes by Region instead of Project Name
- Count
- Material
- Button Shape
Teaching with DAACS

Sample syllabi and projects are available at:
http://www.daacs.org/research/workshops/
Teaching with Digital Archaeological Data: A Research Archive in the University Classroom

Anna S. Agbe-Davies, Jillian E. Galle, Mark W. Hauser, and Fraser D. Neiman

Journal of Archaeological Method and Theory, 2013

Provides concrete examples of how to use digital archaeological data from DAACS to accomplish a range of pedagogical goals in undergraduate and graduate archaeology courses, as well as in general education classes.

Includes a discussion of how archaeologists can use digital data to address ethical and curricular concerns.

Available at: www.daacs.org/workshop-handouts/AgbeDaviesetal2013.pdf
Introductory Archaeology Undergraduate Courses

Common Themes:

1. **A commitment to having students work with archaeological data.**
 a. A belief that even beginning students should understand that archaeological research begins with the artifacts and the contexts from which they came.

2. **A gradual approach to data analysis.**
 a. Often first course assignments involve data tables prepared by instructor.

 a. Later course assignments have students to engage directly with the DAACS website, requiring them to find and aggregate the data they need for their projects.
J. Cameron Monroe’s and Greg O’Malley’s
Slavery in the Atlantic World: Historical and Archaeological Research Methods
HIS 158C/ANTH 179
University of California, Santa Cruz

• Upper Division course on the History of Slavery in the Atlantic World.
• Cross listed in Anthropology and History
• Solidly grounded in archaeological and documentary data analysis.
• Focuses on historical and archaeological research methods
• Organized around 4 major historical themes
 – West Africa and the Atlantic Slave Trade
 – The Plantation Social World
 – The Economics of Slave Life
 – African Culture in the Americas
• Has students work with data in weekly “lab” exercises
• Project difficulty builds gradually towards a final project.
Lab Modules

- **Module 1** – Enslavement in West Africa
- **Module 2** – Trade Goods in Africa
- **Module 3** – Violence on Southern Plantations
- **Module 4** – Domestic life in Slave Quarters***
- **Module 5** – Provisioning Plantations***
- **Module 6** – Cultural Origins of Enslaved Africans
- **Module 7** – Working with DAACS Data***

***DAACS heavy modules

Seville, Yard Space Artifact Distributions
UVA class taught in 2003, before the DAACS website was launched to the public. Data was provided to the students in excel files.

For UWI class, students used the website but Galle decided to provide excel data sets derived from DAACS for their final projects.

In both classes, the majority of students had never conducted any form of analysis or worked with excel before.

In both classes, the unit of analysis for the class projects was the household, and the students were presented with artifact and architectural data from these eighteenth- and nineteenth-century household sites. In a writing assignment and oral presentation, students were asked to interpret and compare the archaeological data from multiple households using the abundance index.
Advanced Undergraduate and Graduate Courses

Common Themes:

1. Prior coursework in archaeology is highly recommended.

2. Assumes some proficiency with statistical methods, and often requires use of a stats package.

3. Students engage with the archaeological data, and DAACS, in a sophisticated manner, using theoretical models and archaeological and historical literature.

4. Students are often required to find and download the data from the DAACS website directly.

5. When dataset is complex, instructor prepares data from DAACS prior to the assignment.
Students required to work with both archaeological and documentary data.

They work first with documentary data from Slave Voyages, The Trans-Atlantic Slave Trade Database: http://www.slavevoyages.org/tast/index.faces

The DAACS Assignment:

For the undergraduates only.

Requires students to develop a hypothesis from their readings, and to test that hypothesis using data from DAACS.

They are not given prepared data, nor are they taught analytical methods in the class.
Fraser Neiman’s
Archaeological Approaches to Atlantic Slavery
http://people.virginia.edu/~fn9r/AnthARH3603.7603/index.html
ANTH 3603/7603 and ARC 3603/7603
University of Virginia

Project 1: Utopia Chronology: How can we infer reliable, fine-grained archaeological chronologies that are necessary to trace patterns of change in lifeways of enslaved people within a single site and at multiple sites? http://people.virginia.edu/~fn9r/AnthARH3603.7603/Project1.pdf

Requires students to seriate pipe stem and ceramic assemblages from the three Utopia sites.

Project 2: Slave Housing in the Eighteenth Century Chesapeake: What do patterns of change across the 18th century and regional variation in slave houses and in the abundance and morphology subfloor pits tell us about social dynamics within slave communities? http://people.virginia.edu/~fn9r/AnthARH3603.7603/Project2.pdf

Project 3: Enslaved Consumers: Do changing frequencies and shapes of locally made and imported ceramic vessels document changing social identities, economic opportunities, and participation by enslaved people in markets and the 18th-century "consumer revolution"? http://people.virginia.edu/~fn9r/AnthARH3603.7603/Project3.pdf

Requires students to calculate abundance indices for ceramics, leaded glass, and buttons from 7 sites in DAACS.
Student Responses

• Students were excited by the prospect of analyzing data in novel ways that speak to the historical and anthropological issues raised in the reading and lecture.

• They shared a sense that they were discovering something new and are close to “the cutting edge.”

• They often lamented the lack of engagement with data in other courses.

• One student wrote in a recent anonymous evaluation: “I wish more archaeological courses like this (practical skills, data analysis, etc.) were offered at UVA, and in this manner for that matter, grounding one in both theory and method. The course material has been deeply engrained and I will use its content for years to come.”
Also check out....

Fraser Neiman’s
Historical Archaeology
http://people.virginia.edu/~fn9r/arh3604/index.html
ANTH 3850/7855 and ARC 3604/7604
University of Virginia

AND

Quantitative Analysis I
http://people.virginia.edu/~fn9r/anth4840.7840/index.html
ANTH 4840/7840
University of Virginia
General Education Undergraduates

These classes use DAACS and data analysis to emphasize that the conceptual and analytical skills are broadly applicable outside archaeology AND outside the university.

Like the introductory archaeology classes, exercises in writing and basic data analysis requires students to develop arguments and learn introductory

Unique challenges of using digital archaeological data in teaching general education classes: archaeological data can be “unruly” requiring iterations of analysis. Learning that research, and data analysis, is iterative is a critical concept, across all course levels.
Anna Agbe-Davies and Mark Hauser
The Science of Archaeology (ANT 120)
DePaul University

The course was to be pitched to a general student audience with no archaeological experience and no intention of further archaeological study. Challenges quickly emerged: first, to fulfill the goals of science curriculum, including instruction in hypothesis development, testing, and interpretation; second, to provide a hands-on learning experience with real data; and finally, as best as we could, to mirror field school learning experiences in the classroom.

The Instructors turned to DAACS to provide the raw material with which to accomplish these objectives.

Had two hour weekly laboratory sessions during which students completed exercises that reinforced concepts covered in lecture and readings. Topics included relative and absolute dating methods in archaeology, how sites are mapped, and site formation processes, familiarizing students with the procedures that produced the data they would get from DAACS. In the fifth week of the ten-week term, the instructors began to introduce students to those data. The students calculated dates using pipe-stem bore sizes and ceramic manufacturing dates. Once they had established temporal contexts for analysis, they used ceramics and faunal remains to study food ways using their assemblages.

--Mark Hauser’s DePaul Course “Archaeology: Unearthing History”, provides students with individual objects from Seville Plantation, and asks them to use library and web resources to write a history of the object, its use, and contexts in which it might be found. He sees this as a precursor to working with tabular data.
Use of DAACS by Historians
(that we know about)

Morgan, P. D., and A. J. O’Shaughnessy

Bly, Antonio
2008 “Pretends he can read”: Runaways and Literacy in Colonial America, 1730-1776” Early American Studies 6.2 (Fall 2008): 261-294.
http://history.appstate.edu/sites/history.appstate.edu/files/Bly%20Pretends%20he%20can%20read.pdf

DAACS also figures in historians’ reflections on the ways in which archaeological data might advance their understanding of changing slave life ways.

Morgan, Phillip D.

Other Digital Resources for Teaching Slavery and Archaeology

Data Rich

- The Digital Archaeological Record (tDar): http://core.tdar.org/
- The Comparative Archaeological Study of Colonial Chesapeake Culture: http://www.chesapeakearchaeology.org/index.cfm

Qualitative historical data but quantitative data could be gleaned

- The International Slavery Museum’s Archaeology of Slavery website, developed in collaboration with DAACS: http://www.liverpoolmuseums.org.uk/ism/slavery/archaeology/index.aspx